
metals

Article

Contact Geometry Modification of Friction-Welded Semi-Finished
Products to Improve the Bonding of Hybrid Components

Bernd-Arno Behrens 1, Johanna Uhe 1 , Tom Petersen 1, Florian Nürnberger 2 , Christoph Kahra 2, Ingo Ross 1

and René Laeger 1,*

����������
�������

Citation: Behrens, B.-A.; Uhe, J.;

Petersen, T.; Nürnberger, F.; Kahra, C.;

Ross, I.; Laeger, R. Contact Geometry

Modification of Friction-Welded

Semi-Finished Products to Improve

the Bonding of Hybrid Components.

Metals 2021, 11, 115. https://

1doi.org/0.3390/met11010115

Received: 17 November 2020

Accepted: 4 January 2021

Published: 8 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Forming Technology and Machines, Leibniz Universität Hannover, 30823 Garbsen, Germany;
behrens@ifum.uni-hannover.de (B.-A.B.); uhe@ifum.uni-hannover.de (J.U.);
petersen@ifum.uni-hannover.de (T.P.); ross@ifum.uni-hannover.de (I.R.)

2 Institute of Materials Science, Leibniz Universität Hannover, 30823 Garbsen, Germany;
nuernberger@iw.uni-hannover.de (F.N.); kahra@iw.uni-hannover.de (C.K.)

* Correspondence: laeger@ifum.uni-hannover.de; Tel.: +49-5117624958

Abstract: To improve the bond strength of hybrid components when joined by friction welding,
specimens with various front end surface geometries were evaluated. Rods made of aluminum
AA6082 (AlSi1MgMn/EN AW-6082) and the case-hardening steel 20MnCr5 (AISI 5120) with adapted
joining surface geometries were investigated to create both a form-locked and material-bonded
joint. Eight different geometries were selected and tested. Subsequently, the joined components
were metallographically examined to analyze the bonding and the resulting microstructures. The
mechanical properties were tested by means of tensile tests and hardness measurements. Three
geometrical variants with different locking types were identified as the most promising for further
processing in a forming process chain due to the observed material bond and tensile strengths above
220 MPa. The hardness tests revealed an increase in the steel’s hardness and a softening of the
aluminum near the transition area. Apparent intermetallic phases in the joining zone were analyzed
by scanning electron microscopy (SEM) and an accumulation of silicon in the joining zone was
detected by energy-dispersive X-ray spectroscopy (EDS).

Keywords: friction welding; hybrid components; tailored forming; surface geometry modification

1. Introduction

If a component has to withstand diverse local loads or a lightweight design is de-
manded [1], the combination of different materials offers the use of a load-adapted compo-
nent. Components consisting of at least two materials are called hybrid components. Due
to different material-specific properties such as melting points or flow stresses, these com-
ponents require adapted joining methods. Depending on the specific material combination,
this can be, for example, a fusion welding process or a friction welding process.

The most important technical advantages of friction welding compared to fusion
welding are the high reproducibility and the wide variety of possible material combinations,
such as aluminum and steel, since the joining process is based on plastic deformation
instead of melting. Compared to friction welding, fusion-welded products have much
larger heat-affected zones which can result in undesired microstructures and reduces the
resilience of parts [2]. The molten phase may cause defects such as gas porosity, which
leads to brittle fracture.

Common multimaterial components are produced by joining several individual parts
that are already in a near-net shape. Therefore, the joining process takes place at the end
of the process chain—for example, splicing or riveting of sheet metal components in the
production of automobile chassis [3]. Another approach is joining by forming, such as the
consolidation of powder with simultaneous bonding with steel during forming to produce
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hybrid gears [4] or the application of ultrasound enhanced friction stir welding to join
different materials [5].

As part of the collaborative research center 1153 (CRC 1153) “Tailored Forming”, a
novel process chain was developed, in which various materials are joined at an initial
stage before being subjected to further processing [6]. The aim of this concept is to further
improve the joining zone by the subsequent processing steps resulting in a load-adapted
component. The CRC 1153 maps several process chains in their entirety, to improve compo-
nents such as shafts, bevel gears or bearing disks [6]. The process chain for manufacturing
hybrid shafts by applying friction welding is depicted in Figure 1. Within this process chain,
joining is followed by impact extrusion, which requires a homogenous formability in both
material sections. Hence, an inhomogeneous temperature distribution in the joined parts
prior to the forming has to be ensured to align the flow curves of the investigated 20MnCr5
steel and of the AA6082 aluminum alloy (EN AW-6082). Therefore, a customized inductive
heating strategy was developed to achieve the material-specific forming temperatures of
900 ◦C in steel and 20 ◦C in aluminum simultaneously [7].
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Friction welding was selected based on various reports which concluded that the
successful joining of aluminum alloys and steels and the free designability of joining zone
geometry—e.g., Ashfaq et al. detected an increased bond strength when using a conical
geometry instead of flat surface. They found that this modification benefits material flow
and results in an improved bond quality [9]. Fukumoto et al. investigated the influence
of different parameters on the completeness of the bond. The most significant result was
that the highest bond strength is achieved by certain friction times of 1 s with a pressure
of 50 MPa and 6 s with a pressure of 150 MPa. Higher or lower friction times resulted in
lower bond strength [10]. Lee et al. focused on the resulting microstructures and their
correlations with the friction parameters. Besides the base metals, they identified different
regions—that is, a region of dynamic recrystallization—a heat-affected zone (HAZ) and
a deformation zone, and how these are formed due to different forming pressures (70
to 150 MPa) and friction times (0.1 to 3.0 s) [11]. Fukumoto et al. studied the properties
of the bonds created by a friction welding process of the aluminum alloy EN AW 1050
and the stainless steel 1.4301 (AISI 304). They were able to show that the extension of
the frictional time from 0.1 to 0.2 s increased the bond strength from 85 to 96 MPa [12].
Sahin characterized the bond by different test methods such as tensile tests and hardness
measurements and found a significant influence of contaminants at the interface on the
joint quality. He recommended a statistical analysis as an economical and reliable method
for selecting optimized welding parameters [13]. Behrens et al. investigated the influence
of surface geometry by using a conical shape. They found out that at room temperature a
sharper shape with an increased friction path results in a higher bond strength. Compared
to specimens with flat surfaces, bond strength could be improved from 252 to 294 MPa
using a conical surface of 30◦ [14]. So far, only a few studies such as [9], [14] or [15] took
an adaption of the surface geometry into account. In [15], the effects of frictional contact
surfaces on the formation of an intermetallic phase were studied. Since most investigations
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are focused on flat surfaces, which often show compound defects in the zone around
the central axis after joining [10], on other material combinations or without focusing
the bonding strength [15], further research is required regarding alternatives such as a
combination of material bond and form locking by varying the friction contact geometries.
Comparison these results with additional references is only possible to a limited extent,
since parameters of the friction welding process differ as well as the material combinations.

Friction welding processes are divided into three sequences: contact phase, friction
phase and deformation phase [16]. In the contact phase, the geometries are aligned and
brought into contact with a specific pressure. The heat is generated in the friction phase,
in which one component begins to rotate—in this case, the steel side. This phase can
be adjusted by controlling the friction time or the relative friction path of the welding
components covering in the axial direction. In the deformation phase, the rotation stops
and the welding components are joined by generating high axial pressure.

To improve the bonding strength of the steel–aluminum specimen and thus manufac-
ture semifinished parts suited to subsequent impact forging, this work is mainly concerned
with varying the contact geometries. In addition to increasing the contact areas between
both materials or increasing the contact times and contact pressures in the sample center,
possibilities for generating a form closure are also investigated in addition to the pure ma-
terial bond. Different combinations of friction surface geometries are tested experimentally
in the following and their impact on the bond strength is determined. For example, the
applicability of undercuts is examined to implement the additional bonding mechanisms
such as form locking.

2. Materials and Methods

The following subsections describe the applied materials and the performed methods
of the investigation. For this purpose, the basic conditions are explained and clarified with
the help of illustrations.

2.1. Materials

For the friction welding, the aluminum alloy AA6082 (EN AW-6082) and the case
hardening steel 20MnCr5 were chosen. 20MnCr5 is a chromium–manganese alloyed steel.
During friction welding, the steel was employed in its delivery condition (soft annealed)
with a tensile strength of 554 MPa. The aluminum alloy used featured the T6 condition with
a tensile strength above 360 MPa. The mechanical properties, tested in prior investigations,
are listed in Table 1 and the chemical compositions are given in the content lists in Table 2,
measured by optical emission spectrometry.

Table 1. Mechanical properties of the 20MnCr5 steel and AA6082 aluminum alloy.

Material Tensile Strength
Rm in MPa

Uniform
Elongation Ag in %

Elongation at
Fracture A in %

Hardness in
HV0.1

20MnCr5 554 ± 5 111 ± 1 276 ± 6 170 ± 13
AA6082 364 ± 0 45 ± 1 104 ± 6 113 ± 1

Table 2. Chemical composition of the 20MnCr5 steel and AA6082 aluminum alloy in wt.%., measured by optical emission
spectrometry.

Element C Si Mn P Cr S Al Fe Cu Mg Zn Ti

20MnCr5 0.195 0.275 1.190 0.013 1.050 0.010 0.030 96.85 0.164 - 0.023 -
AA6082 - 1.040 0.451 0.001 0.035 - 97.60 0.152 0.031 0.620 0.011 0.018

The microstructures of both base materials prior to friction welding are shown in
Figure 2. On the left side (a) the ferritic–pearlitic microstructure of the steel 20MnCr5 is
depicted. To visualize the grain boundaries and the different microstructures, the sample
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was etched with Nital, a solution of nitric acid (3%) and alcohol. A micrograph of the
aluminum alloy in its T6 condition is shown on the right side (b).
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2.2. Friction Surface Geometries

The different surface geometries of the semifinished products investigated were chosen
to improve the joining zone properties by surface enlargements, undercuts and shrinkage.
An increase in the friction surface leads to a higher temperature generation, from which a
lower demand for the yield forces results. As described in the literature [10], air pockets can
occur in the center of the specimen for flat surfaces. With higher temperatures, these can be
avoided. An undercut results in a form fit or force fit, depending on whether the aluminum
fills a hole by flowing or encloses a shape by shrinking. The geometries, manufactured by
machining, are depicted in Figure 3.

Geometry A (Figure 3) was selected for a form-locking connection to enhance the
bonding strength. During friction welding, the undercut of the cavity located in the steel
part with an angle of 75◦ was filled with aluminum. On the basis of preliminary tests, an
angle of 75◦ was determined to be optimum, since at this angle complete mold-filling can
be ensured, despite a relatively concise form fitting. Geometry B offers an enlarged friction
surface due to the hemispherical geometry, which results in a higher heat generation due to
friction. The shoulder at the transition from the hemisphere was designed with a beveled
edge to improve material flow. Geometry C features four drilled holes intended to increase
the torsional stiffness by means of flowing aluminum entering the holes, thus achieving
a form lock. Geometry D forms a hemispherical surface, resulting in an enlarged friction
surface analogous to Geometry B. The difference to Geometry B is the absence of a shoulder
to examine its necessity for the material flow.

Conical geometries were welded with varying angles of 30◦ (Geometry E) and 45◦

(Geometry G) using an increased friction contact surface and reduced manufacturing
effort compared to the hemispherical Geometry B. The conical Geometry G is additionally
truncated to simplify production and to combine an axial force with directed material
flow during the forming process. Compared to Geometry A, Geometry F has no cavity in
the steel component. The undercut was formed by a protruding elevation with an angle
of 80◦, while the aluminum is of a flat geometry. The aluminum was intended to flow
around the shoulder and shrink to the steel due to the greater thermal expansion coefficient.
In addition to the form lock and material bond, this geometry provides a force-locked
connection to enhance the bonding strength. Preliminary tests have shown that too large a
pin or an angle smaller than 80◦ will result in air pockets. Geometry H has a pin on the
aluminum side to investigate the influence of the expected deformation ratio and the high
friction path on the bonding strength (Table 3).
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Figure 3. Geometries of friction surfaces (A–H), outer diameters of 40 mm.

Table 3. Main parameters of the friction welding process.

Geometry A B C D E F G H

Friction speed in 1/min 1500 1500 1500 1500 2000 2000 2000 2000
Frictional force in kN 150 100 80 80 70 75 70 75

Friction time in s - 2 2 0.05 0.1 - 0.1 -
Relative friction path in mm 4 - - - - 4 - 10

Press force in kN 240 120 150 120 120 150 120 120
Press time in s 2 1 2 1 2 2 2 2

2.3. Friction Welding

At first, the geometries presented above were cleaned in an ultrasonic bath filled with
ethanol. After drying, these were friction-welded on a KUKA Genius Plus (Kuka AG,
Augsburg, Germany). The most important process parameters are listed in Table 3. The
parameters were selected according to prior investigations. For comparability, most pa-
rameters were chosen to be identical or limited to a few varying values according to the
different geometries. Parameters with varying values were selected since these resulted in
similar shapes and qualities of the bonding, according to first visual examinations.

The major differences between the performed welding processes of the first four
geometries and the second four are the following: The friction speed was increased from
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1500 to 2000 rpm for Geometries E, F, G and H to ensure a convenient heat generation at
lower friction forces. Lower frictional forces were chosen for the second four geometries
to prevent undesired deformations during the friction phase. In order to investigate the
influence of high true strain, the friction path of Geometry H was increased in comparison
to the path-controlled processes of Geometries A and F.

2.4. Metallographic Analysis

Following the friction welding process, the samples were cut along the axis of rotation
and the cross section of the joining zones were prepared for metallographic examinations
by grinding, polishing and etching. The quality of the joining zone was analyzed on micro-
graphs by detecting phases and inclusions. In addition, the Vickers hardness was measured
according to DIN EN ISO 6507-1 [17] (HV0.1) to compare the mechanical properties of the
joining zone and of the heat-affected zones with those of the base materials. Furthermore,
the joining zone was analyzed by scanning electron microscopy (SEM) (AURIGA from
Zeiss, Oberkochen, Germany) and energy dispersive X-ray spectroscopy (EDS) (Oxford In-
struments, Abingdon, UK). A slope cut was prepared by applying a focused ion beam (FIB)
to excavate a cross section not influenced by prior conventional steps of metallographic
preparations.

2.5. Mechanical Testing

Tensile tests were carried out for all geometries to determine the tensile strength and
to evaluate the bonding strength. For each geometry two samples were tested on a Zwick
Z250 kN (ZwickRoell GmbH & Co. KG, Ulm, Germany) with the preload force of 300 N,
the clamping pressure of 30 MPa and the strain rate of 0.002 s−1. The geometry of the
tested tensile specimen is depicted in Figure 4, which was manufactured out of the friction
welding products with a reduced diameter for the gauge length. The joining zone is not
located at the center of the tensile specimens due to the geometry of the welding products.
Besides the decentralized joining zone, the results of the tensile tests reveal no irregularities,
since necking did not occur or was located within the gauge length.
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3. Results

The following sections present the results of the different testing methods. These in-
clude the determination of mechanical parameters as well as metallographic investigations.

3.1. Tensile Test

In Figure 5 the stress–strain curve of a sample of Geometry A is exemplarily depicted
on the left side and a comparison of the samples with the highest tensile strengths Rm is
presented on the right side.
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The tensile tests show that though the tensile strength Rm achievable with the various
geometries differs, the qualitative shapes of the curves are almost identical. Fracture in
the joining zone occurs due to brittleness of all geometries except Geometry A (confer
Figure 6). An increased elongation at fracture is only visible in the stress–strain curve of
Geometry A; here, reaching the stress maximum (Figure 5, at a strain of 0.022) a lateral
contraction of the aluminum alloy can be observed.
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All specimens have brittle fractures. Just specimens of Geometry A have a necking
(Figure 5) and more remains of the aluminum (Figure 6) than other specimens. Figure 6
shows one specimen of Geometry A after tensile testing.

3.2. Metallography

In the following, cross sections of the specimens of Geometries B, C, D, E and F are
depicted to show exemplary bonding defects. The Geometries A, G and H feature the
desired bonding quality and visible defects such as gas pores, inclusions or cracks are not
present in the joining zone.

Figure 7 gives an overview of the Geometries B (a) and D (b). The plotted angles mark
the direction of the material flow when the aluminum alloy is detached from the steel. The
bond of sample Geometry B is almost complete. At an angle of approximately 15◦, the
bond starts detaching and closes again in the shoulder area. This results in air inclusions
and is a weak point over the complete circumference of the joint. The reason for this is the
material flow which is indicated schematically by the violet arrows in Figure 7a.
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Figure 7. (a) Cross section of Geometry B and (b) cross section of Geometry D; the angles mark the detachment of the
aluminum.

At Geometry D (Figure 7b), the aluminum alloy peels off at an angle of 35◦ and does
not get into further contact. The material flow and the applied forces possibly cause the
detachment in both geometries.

Geometry C is depicted in Figure 8. A complete filling of the holes was not achieved
and gaps on the circumference occur with increasing depth; additionally, fragments of the
aluminum alloy are visible.
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Figure 8. Geometry C, (left) schematic draft, (middle) overview of a filled borehole, and (right) exemplary gap at the
borehole flank.

A section of Geometry E is depicted in Figure 9. The bond is complete except for
higher radii, where air inclusions at diameters of 37 to 40 mm can be seen. For Geometry F,
a small air inclusion appears near the undercut. This area is displayed in Figure 10.

The hardness of the samples was measured at different distances across the joining
zone to characterize the influence of the generated heat and the forming during the friction
welding process. It can be assumed that the size of the grains and the concentration of
elements are influenced by the heat resulting in varying hardnesses compared to the basic
materials. The space between two recording points in the aluminum alloy was chosen
according to DIN EN ISO 6507-1 [17]. For simplification, the same distance of 0.5 mm was
used in the steel. Figure 11 gives an example (Geometry F) of the measurements. The
transition area could not be narrowed down due to the limiting conditions.
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Figure 11. Diagram of the hardness of a sample with Geometry F including the variance, range between recording points is
approximately 0.5 mm.

On the steel side, almost all samples show a small increase in hardness for the measur-
ing point closest to the transition area—for example, recording point 4 in Figure 11. The soft
annealed base material has an average hardness of 170 HV0.1 and is marked in Figure 11
as a horizontal dotted line. It can be concluded that some samples have experienced a
slight softening and others an increase in steel hardness further from the interface in the
axial direction.



Metals 2021, 11, 115 10 of 15

The aluminum alloy has an average hardness of 113 HV0.1 in the T6 condition. Close
to the joining zone the aluminum becomes softened and has an average hardness below
75 HV0.1, as can be seen for Geometry F in Figure 11. Geometry E is the only exception
where a hardness of 103 HV0.1 was determined, possibly caused by a lower heat generation.

To investigate the joining zone, micrographs were examined. Two different types of
interlayers between steel and aluminum alloys were found in the metallographic analyses.
The first layer is located on the aluminum side near the friction welding surface and has a
darker color. Figure 12 depicts an analyzed example of such a layer. Its thickness varies
up to 1.5 µm. It is mainly found on flat areas of the friction surfaces—for example, in the
undercut in Geometry A around the central axis. Since it was not possible to characterize
the layer in detail by light microscopy, scanning electron microscopy was applied (confer
Section 3.3).
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The second layer found close to the joining zone, is a layer of fine-grained steel
microstructures with increasing degree of fineness from the basic steel to the interface. Its
thickness increases with the diameter from about 0.5 up to 3 µm (Figure 13).
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Figure 13. (Left) fine-grained layer on the steel side close to the joining zone and (right) overview of
Geometry A.

3.3. Scanning Electron Microscopy

To identify the darkened layers described in Section 3.2, EDS analyses were carried out
via a scanning electron microscope using a sample of Geometry C. This sample was chosen
due to the clear formation of the darkened layer (Figure 12). Figure 14 depicts the cross
section prepared by a FIB with the highlighted recording line of the EDS measurement. The
results of the EDS analysis are given in Figure 15 and illustrate the chemical composition
of the elements along the marked line.
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beam (FIB) in-lens detector (sample of Geometry C).
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Figure 15. Energy-dispersive X-ray spectroscopy (EDS) analysis of the transition area in a specimen
of Geometry C, SEM image of the recording line (yellow), Electron High Tension (EHT) = 12 kV,
probe current = 1.7 nA, and working distance = 4.9 mm.

The left side of the graph in Figure 15 depicts the base material composition of the
aluminum alloy. A content of almost 5 at.% of diffused iron is noticeable. On the right side
of the graph, the composition of the steel base material is displayed, which contains a certain
amount of alloying elements. Akin to the diffused iron on the aluminum side, aluminum
diffused into the steel side with a content of about 5 at.%. Furthermore, an increased
occurrence of manganese, magnesium and silicon can be observed in the transition zone. A
mapping of the silicon content reveals its enrichment within a zone of about 0.5 µm as can
be seen in Figure 16.



Metals 2021, 11, 115 12 of 15

Metals 2021, 11, x FOR PEER REVIEW 12 of 15 
 

 

[19]. Silicon carbide particles can thus accumulate at the slope. Since in this case the EDS 
measurement was carried out on a cross section prepared using a FIB, such an influence 
of the preparation can be excluded. 

Here, the increased silicon content measured in the joining zone by an EDS analysis 
is in accordance with observations of Liu et al. and Wang et al., who also reported in-
creased silicon concentrations in the intermetallic compound (IMC) layer in the joining 
zone in investigations on friction welding of aluminum and steel [20,21]. The silicon is 
incorporated into the IMC layer and slows down the growth of the IMC layer [22]. With 
increasing silicon content in the aluminum alloy, the thickness of the IMC layer is reduced, 
and the phase constitution of the aluminide layers is altered [23]. 

 
Figure 16. EDS analysis of a sample with Geometry C, (a) distribution of silicon, and (b) silicon 
content in wt.% near the joining zone. 

4. Discussion 
The presented results reveal that the surface geometry of friction-welded semifin-

ished products and the parameters of the friction welding process have a decisive impact 
on the resulting bond and its strength. For example, Figure 14 shows microinterlocking, 
which may result from the different contact areas of the various geometries generating 
different temperatures during the friction process. This interlocking can result in an im-
provement of the bonding strength. Additionally, the different generated temperatures 
can lead to different microstructures, such as the grain size or the thickness of a possible 
intermetallic phase, and further in different bonding strengths. 

Micrographs of the cross sections reveal that the material flow has an impact on the 
completeness of the bond. For example, for Geometry B (Figure 7a), air inclusions occur 
due to the resulting material flow. The aluminum alloy flowed outwards over the dome 
and detached from the 20MnCr5 steel. In addition, it can be assumed that some of the 
aluminum alloy was pushed back inwards onto the shoulder due to the colder outer zone, 
which has a higher deformation resistance. Another example of the importance of the ma-
terial flow are the boreholes of Geometry C (Figure 8), which were not fully filled by flow-
ing aluminum. The pressure of the enclosed air inside the boreholes inhibited a complete 
filling. Higher temperatures generated by rotational speed or pressure would increase the 
degree of deformation. This could lead to a better material flow. 

The hardness tests show a decisive influence of the processing as a small increase in 
the hardness on the steel side near transition area (confer Figure 11). This hardness in-
crease is probably caused by a combination of strain hardening due to the deformation 
process and grain refinement in the joining zone or by the occurrence of harder phases 
such as an intermetallic phases. An indication for the latter might be the multiple changes 
of the slope visible in the EDS line scan at the aluminum side in Figure 15 and the similar-
ity of the darker layer in Figure 12 compared to the literature, such as [15]. 

Contrary to the hardness increase in the steel, the aluminum became softened close 
to the transition area which can probably be attributed to recrystallization or overageing 

Figure 16. EDS analysis of a sample with Geometry C, (a) distribution of silicon, and (b) silicon content in wt.% near the
joining zone.

High silicon contents on sample surfaces can result from conventional sample prepa-
ration with silicon carbide grinding discs when a slope is formed in the joining zone during
preparation due to the large differences in strength between aluminum and steel [19].
Silicon carbide particles can thus accumulate at the slope. Since in this case the EDS mea-
surement was carried out on a cross section prepared using a FIB, such an influence of the
preparation can be excluded.

Here, the increased silicon content measured in the joining zone by an EDS analysis is
in accordance with observations of Liu et al. and Wang et al., who also reported increased
silicon concentrations in the intermetallic compound (IMC) layer in the joining zone in
investigations on friction welding of aluminum and steel [20,21]. The silicon is incorporated
into the IMC layer and slows down the growth of the IMC layer [22]. With increasing
silicon content in the aluminum alloy, the thickness of the IMC layer is reduced, and the
phase constitution of the aluminide layers is altered [23].

4. Discussion

The presented results reveal that the surface geometry of friction-welded semifinished
products and the parameters of the friction welding process have a decisive impact on the
resulting bond and its strength. For example, Figure 14 shows microinterlocking, which
may result from the different contact areas of the various geometries generating different
temperatures during the friction process. This interlocking can result in an improvement
of the bonding strength. Additionally, the different generated temperatures can lead to
different microstructures, such as the grain size or the thickness of a possible intermetallic
phase, and further in different bonding strengths.

Micrographs of the cross sections reveal that the material flow has an impact on the
completeness of the bond. For example, for Geometry B (Figure 7a), air inclusions occur
due to the resulting material flow. The aluminum alloy flowed outwards over the dome
and detached from the 20MnCr5 steel. In addition, it can be assumed that some of the
aluminum alloy was pushed back inwards onto the shoulder due to the colder outer zone,
which has a higher deformation resistance. Another example of the importance of the
material flow are the boreholes of Geometry C (Figure 8), which were not fully filled
by flowing aluminum. The pressure of the enclosed air inside the boreholes inhibited a
complete filling. Higher temperatures generated by rotational speed or pressure would
increase the degree of deformation. This could lead to a better material flow.

The hardness tests show a decisive influence of the processing as a small increase in
the hardness on the steel side near transition area (confer Figure 11). This hardness increase
is probably caused by a combination of strain hardening due to the deformation process
and grain refinement in the joining zone or by the occurrence of harder phases such as
an intermetallic phases. An indication for the latter might be the multiple changes of the
slope visible in the EDS line scan at the aluminum side in Figure 15 and the similarity of
the darker layer in Figure 12 compared to the literature, such as [15].
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Contrary to the hardness increase in the steel, the aluminum became softened close to
the transition area which can probably be attributed to recrystallization or overageing of the
T6 state due to heat generation during the friction welding process. In the transition area,
the hardness decreased gradually between steel and aluminum, caused by mutual diffusion
of aluminum and iron. An example of the concentration profile across the transition area is
depicted in Section 3.3, Figure 15.

Hardness itself does not account for the quality of a bond, but it correlates with the
tensile strength. Summarized, the hardness measurements reveal a heat-affected zone in
both materials and in between them but could not be narrowed down due to the limiting
conditions.

For the intended following impact extrusion process, Geometries A, F and H show
the most promising results in mechanical tests and metallographic analyses. They feature
a nearly complete bonding and high tensile strengths above 220 MPa. Only Geometry F
contains a small volume of air inclusions at the undercut, which can possibly be avoided
using modified parameters of the friction welding process. All specimens exhibited brittle
fractures except for Geometry A. Brittle fractures underline the possible presence of (brittle)
intermetallic phases [15]. Geometry H has the highest tensile strength of almost 280 MPa
which is 100 MPa lower than the tensile strength of the base material (over 360 MPa), thus
reaching about 77% of the base strength. Regarding the future processing by subsequent
heating and impact extrusion, a recrystallization of the microstructure in the transition
area can be expected and might further increase the bonding strength. With the evaluated
bonding strength, Geometries A, F and H are hence suited for the subsequent inductive
heating and forming process.

5. Summary and Conclusions

Based on the presented results, the following conclusions can be drawn:

• The highest tensile strengths values have been achieved using Geometries A (257 MPa),
F (222 MPa) and H (280 MPa) (flat surface: 252 MPa in [14]);

• The completeness of the joint differs depending on the geometry and the correlation
to the parameters of the friction welding process;

• The hardness close to the transition area was influenced by thermal effects of the
friction welding process, resulting in a softening of the aluminum and an increased
hardness in the steel;

• The EDS analysis showed what is most likely an intermetallic phase at the joining
zone with a high content of silicon.

Table 4 presents the geometries investigated, their bond strengths and the main
comments with regard to the further process chain of the CRC 1153.

Table 4. Results of the different geometries with regard to the further process.

Geometry Bond Strength (Average) Comments

A
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• Necking in aluminum at tensile tests
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• Small air inclusion at the undercut
• Suitable for inductive heating
• Shrinkage resulted in force- and form-locking
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• Complete bonding
• Bond strength could be enhanced by using different friction
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280 ± 17 • Complete bonding

The influence of various factors, such as friction welding parameters and material
choice, leads to a large spectrum of possible improvements for enhancing the bonding
strength. For example, the integrity of the joining zone might be improved by increasing
heat generation during processing and thus diffusion of the alloying elements, though
grain growth is to be expected. Hence, further investigations will focus on specimens with
fixed surface geometries but varied friction welding parameters—e.g., a modification of
Geometry F with an undercut angle of 80◦ on the steel side is to be expected promising
regarding a further increase in the bonding strength. With this geometry, not only material
bonds but force and form locks as well can be accomplished without a significant penetra-
tion of the aluminum alloy on the steel side, which otherwise could lead to a premature
melting of the aluminum during induction heating in the further processes within the
process chain of the CRC 1153 [8].
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