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The virtual element method (VEM) has been attracting interest for applications in micromechanical homogenization. This
work aims to introduce and analyze multiphysical formulations in a VEM-based numerical homogenization scheme. Ad-
dressing electromechanical polycrystalline materials, the performance of a VEM-based approach with respect to FEM-based
approaches is investigated. Results show the outperformance of VEM with respect to FEM models (with the same number
of degrees of freedom) on the obtained value of homogenized quantities. The coarse mesh permitted by the VEM rationale,
where each grain might represent one element, allows to maintain a low computational cost with a high accuracy.
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1 Introduction

The computational homogenization of the mechanics of polycrystalline materials is associated with requests of flexibility
with regards to mesh generation and element shapes. This request couples with the challenge of treating strong and random
anisotropies associated with different crystalline systems. In addition, advanced engineering applications (like the design
of sensors, batteries or storage moduli) introduce the need of accounting for electromechanical coupling effects. In the
framework of micromechanical homogenization, the virtual element method (VEM) has been attracting attention for modeling
anisotropic material behaviors and for the homogenization of composite materials [1–4]. This method permits the use of
polygonal/polyhedral elements which might perfectly fit grain geometries in polycrystalline materials. Present works aims to
analyze the performance of VEM-based homogenization for multiphysical polycristalline materials, extending results shown
in [4] in an electromechanical context and by comparing FEM and VEM approaches also in a three-dimensional framework.

2 Constitutive Framework and Computational Approach

At the microscale, a representative volume element RVE of an electro-mechanical polycrystalline material is introduced.
From the primary variables of the coupled problem (i.e. displacement u and electric potential φ), the strain ε and electric
E fields immediately follows and are collected in vector P = vec{ε,E}. Each grain is anisotropic and the grain material
preferred directions are identified by a pseudo-random set of angles Φi ∈ [0, 2π] for i ∈ {1, 2, 3}. For each grain, running
over index g, the constitutive response is introduced through a quadratic potential energy density ψg(P):

ψg(P) =
1

2
P ·Gg ·P, Gg = II−1

L GlIIP, {IIL, IIP} ∈ SO (3) . (1)

Here, Gl denotes the overall modulus of the physical coupled problem, collecting moduli {C, e, ε} representing the mechani-
cal, electro-mechanical, and dielectric moduli, respectively. These moduli are expressed in a coordinate system aligned with
grain material preferred directions. Thus, Gl is rotated back into a global coordinate system at the RVE level by means
of suitable coordinate-transformation tensors {IIL, IIP}. The homogenized moduli are obtained by a series of numerical
simulations. By exploiting the average strain theorem, generalized in a multiphysics framework [5], appropriate boundary
conditions atRVE level are applied in order to obtain an orthonormal basis for the average primary variables within theRVE .
Therefore, introducing 〈·〉 as the volume average operation within the RVE , 9 independent values 〈P〉 = P̄m are imposed,
such that [P̄m]i = δim, with δim being the delta-Kronecker symbol (i,m = 1, . . . , 9). The homogenized moduli are obtained
by volume averaging of the output quantities obtained for all P̄m, that is stress σ|P̄m

and electric displacement D|P̄m

[G]im = [vec{σav,Dav}]im with σav = 〈σ|P̄m
〉 , Dav = 〈D|P̄m

〉 , and i,m = 1, . . . , 9 . (2)

As outlined in [4], virtual elements provide with the ability of being arbitrary shaped and thus also to be able of handling
varying number of nodes. This leads to a perfect fit regarding artificially generated polycrystalline grain structures through
Voronoi tessellation, where each grain might be represented by a single element. The virtual element approach employs a split
of primary fields U = {u, φ} into projected part and a remainder U = Uh+(U− Uh). The latter induces a split of the potential
into a consistency and a stabilization part [4], with a control-parameter β ∈ [0, 1] for stabilization-influence. Following results
in [4], the latter parameter is chosen equal to β = 0.1.
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3 Results

Numerical results compare solutions obtained with different classical FEM approaches and a low-order VEM solution. In the
VEM case, each element represents one grain (possibly non-convex) and nodes are located only at grain vertices. Moreover,
a low-order FEM coarse O1 mesh is introduced (with linear shape function and the same number of nodes as the VEM one),
together with a higher order FEM coarse O2 mesh (with quadratic shape functions and the same number of elements as FEM
coarse O1). A quantitative comparison is obtained introducing the computational error EC :

EC = 102

∣∣∣∣∣ ||G||M||G||fine
− 1

∣∣∣∣∣ , || (·) || =

√√√√ n∑
i

m∑
j

(·)2
ij , M = {FEM (O1), FEM (O2), VEM}. (3)

The computational error EC investigates on the percentage of deviation of the coupled electromechanical modulus Ḡ with
respect to a FEM-based fine solution (·)fine obtained from a convergence study on the FEM simulation (> 300k elements).
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Fig. 1: (a) RVE and one polyhedral shaped grain, discretized by one virtual element, and by coarse or fine tetrahedral finite elements; (b)
Computational error EC on the Frobenius Norm of homogenized modulus G of the electro-mechanical coupled problem for a piezoelectric
material with trigonal unit cell structure. Values of parameters correspond to material mp-1434 in the Materials Project [6].

Results show that the Virtual Element (VE) formulation allows to accurately capture the coupled electro-mechanical behavior
of the polycrystalline assembly. In particular, Fig. 1b demonstrates that the computational error on G obtained with a VE-
approach is significantly less than the one obtained with the linear coarse FE-approach (3% vs 50%). Even when applying
a higher order finite element formulation on the coarse FE mesh, the VEM solution provides a lower error with respect to
the finest benchmark solution (3% vs 10%). The results were obtained by using the symbolic-numeric software tools ACE-
GEN/ACEFEM [7], a subpackage of MATHEMATICA, which utilizes automatic differentiation based formulation techniques.
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