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This work addresses an efficient low order virtual element method (VEM) for the modeling of single-slip crystal plasticity
system undergoing finite deformations. VEM has been attracting attention as a novel scheme within the field of computational
mechanics. A key advantage of VEM is the ability of constructing an arbitrary element shapes that can be non-convex [1].
Another important aspect is that VEM fits the grain shapes of crystal plasticity within polycrystalline aggregates perfectly.
Contrary, classical finite element (FE) approaches request a fine mesh-size at possibly sharp geometric regions, i.e. complex
shaped grain boundaries.
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1 Introduction

During the last decade, the request for locally adapted material response, induced by lightweight strategies, was undergoing
a constant increase. The collaborative research centre 1153 (CRC 1153) investigates the production of hybrid workpieces,
showing such response. The physical effects, exhibiting at the joining zone of hybrid structures, are located at the microscopic
length scale. In the micro-mechanics of polycrystalline materials, i.e. metals, the plasticity is affected by the underlying
crystal lattice structure. Such microstructural environments exhibit highly heterogeneous geometric properties such like grain
shapes, possibly non-convex, as well as rotations of the particular grains. In literature, studies address widely the mechanics
of materials, modeled within the framework of virtual elements, i.e. thermo-elasto-plastic coupled behavior in [2, 3], forming
processes in [4] or fracture analysis in [5, 6]. However, by addressing a crystal plasticity formulation at polycrystalline
aggregates, the VE-performance remains still an open question. This work aims to bridge this gap by providing a finite strain
crystal plasticity model, embedded within a virtual element framework at a heterogeneous microstructure.

2 Constitutive Framework and Computational Approach

The microstructure is modeled using the principle of representative volume element (RVE), introduced at grain-level of the
polycrystalline aggregate. The rotation of the grains is captured by a set of pseudo-random generated angles ϕi ∈ [0, 2π]
with i ∈ {1, 2, 3}, denoting particular Euler-rotations. The response of each grain g is described by an incremental work
potential [7]:

ψg = ψlat,g + ψh + δtψdis, ψlat,g = ψiso + ψani,g, ψani,g = c

3∑
i=1

(Ki − 1)2, (1)

where ψlat,g denotes the stored elastic energy due to the lattice, splitted into an isotropic contribution ψiso, covered by a
standard Neo-Hookean model, and a lattice structure specific contribution. The anisotropy is governed by invariants Ki =
Tr(CeMi), with Mi = ai ⊗ ai being the structural tensor of the i-th preferred direction. The hardening due to movements
of dislocations through the lattice is modeled with a linear hardening ansatz by an introduction of the energy function ψh =
1
2γ

2h0. Herein, c and h0 are particular material parameters. Following [7], the plastic slip contribution of the work potential
is modeled by an incremental dissipation function δtψdis, with δt = t− tn being the time-increment. The computation of the
results is reached by the minimization of a potential:

U :=
∑
g

∫
Gg
ψgdRVE − Pext(u), (2)

where Pext denotes the potential, induced by external loads. The virtual element method is based on a split of the primary
fieldsR into a projected part and a remainder, introduced in [1], to:

Rh = ΠRh + (Rh −ΠRh), ΠRh =

3∑
i=1

(NΠ · ai) ei, NΠ = {1, X, Y, Z}, (3)
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with Π denoting the projection operator that projects the virtual space to its polynomial space of order one. A linear ansatz,
illustrated in [2], for the projected primary fields ΠRh is used. NΠ is a vector, collecting a constant 1 and the spatial coordinate
variables, belonging to the basis vectors ei with i ∈ {1, 2, 3}. Hence, ai = {ai1, ..., ai4} are the coefficients, defining ΠRh

in each element G. Following [8], the potential U is undergoing a decomposition into a consistency and a stabilization terms:

U(ORh,Rh) = A
G

[
(1− β)U(OΠRh|G ,ΠRh|G)− βU(ORh|G ,Rh|G)

]
, (4)

with β ∈ [0, 1] being a fraction to control the stabilization influence and being computed by following the ansatz in [1]. The
element residual and the element tangent matrix are computed by utilizing automatic differentiation based tools within the
software ACEGEN/ACEFEM [9], which is a subpackage of MATHEMATICA.

3 Representative Numerical Example

The projection is computed by utilizing a decomposition of the virtual element G into its faces F ∈ ∂G. Whereas its stabiliza-
tion term is computed on a triangulated submesh of tetrahedron T ∈ G, see Fig. 1a).

a) b)

Fig. 1: a) Schematic illustration of the decomposition of a polyhedral virtual element G into its faces F and its internal mesh, consiting
of tetrahedral elements T; b) Plot of shear γ, acting on the plane (1 1 1) of a fcc lattice structure, resulting from an uniaxial tension test
u = Ex with fixed stabilization β = 0.4.

The resulting plastic shear γ of an uniaxial tension test within e1 direction, by applying constant strain Eij = 1 with i, j = 1
for u = Ex is illustrated in Fig. 1b). The influence of the anisotropic lattice structure as well as its pseudo-random rotations
are observed on the plastic shear γ. Furthermore, Fig. 1b) demonstrates the development of the plasticity through the particular
grains within theRVE .
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